Gallium hydride vapor phase epitaxy of GaN nanowires

نویسندگان

  • Matthew Zervos
  • Andreas Othonos
چکیده

Straight GaN nanowires (NWs) with diameters of 50 nm, lengths up to 10 μm and a hexagonal wurtzite crystal structure have been grown at 900°C on 0.5 nm Au/Si(001) via the reaction of Ga with NH3 and N2:H2, where the H2 content was varied between 10 and 100%. The growth of high-quality GaN NWs depends critically on the thickness of Au and Ga vapor pressure while no deposition occurs on plain Si(001). Increasing the H2 content leads to an increase in the growth rate, a reduction in the areal density of the GaN NWs and a suppression of the underlying amorphous (α)-like GaN layer which occurs without H2. The increase in growth rate with H2 content is a direct consequence of the reaction of Ga with H2 which leads to the formation of Ga hydride that reacts efficiently with NH3 at the top of the GaN NWs. Moreover, the reduction in the areal density of the GaN NWs and suppression of the α-like GaN layer is attributed to the reaction of H2 with Ga in the immediate vicinity of the Au NPs. Finally, the incorporation of H2 leads to a significant improvement in the near band edge photoluminescence through a suppression of the non-radiative recombination via surface states which become passivated not only via H2, but also via a reduction of O2-related defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

Hydride Vapor Phase Epitaxial Growth of Thick GaN Layers with Improved Surface Flatness

Thick GaN layers have been grown by hydride vapor phase epitaxy (HVPE) on different GaN templates grown by metalorganic vapor phase epitaxy. Crack formation could be reduced by using a hydrogen/nitrogen carrier gas mixture. By carefully optimizing the growth conditions in the final stage of the process, excellent surface morphologies could be obtained at still acceptably high growth rates. Up t...

متن کامل

Optimizing Structured SiN-masks for Self Separation of Full 2”-GaN Wafers by Hydride Vapor Phase Epitaxy

Using a previously shown method, we prepared 2”-GaN wafers as templates for a self separation process. Self separation is happening during cooldown after growing thick layers of GaN in our hydride vapor phase epitaxy (HVPE) reactor. Our templates consist of GaN grown by metalorganic vapor phase epitaxy (MOVPE) directly on sapphire. These GaN layers are masked with 200nm of SiN that are structur...

متن کامل

Evolution of GaAs nanowire geometry in selective area epitaxy

Articles you may be interested in Effect of interwire separation on growth kinetics and properties of site-selective GaAs nanowires Appl. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: Ab initio simulations supporting center nucleation Surface optical phonons in GaAs nanowires grown by Ga-assisted chemical beam epitaxy Polarity driven ...

متن کامل

Catalytic hydride vapour phase epitaxy growth of GaN nanowires.

Catalytic growth of GaN nanowires by hydride vapour phase epitaxy is demonstrated. Nickel-gold was used as a catalyst. Nanowire growth was limited to areas patterned with catalyst. Characterization of the nanowires with transmission electron microscopy, x-ray diffraction, and low temperature photoluminescence shows that the nanowires are stoichiometric 2H-GaN single crystals growing in the [000...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011